Magento to Postgres

This page provides you with instructions on how to extract data from Magento and load it into PostgreSQL. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Magento?

Magento is an open source content management system for ecommerce web sites. It's known for its flexibility and wide adoption across ecommerce businesses of all sizes.

What is PostgreSQL?

PostgreSQL, often known simply as Postgres, is a hugely popular object-relational database management system (ORDBMS). It labels itself as "the world's most advanced open source database," and for good reason. The platform, which is available via an open source license, offers enterprise-grade features including a strong emphasis on extensibility and standards compliance.

PostgreSQL runs on all major operating systems, including Linux, Unix, and Windows. It is fully ACID-compliant, and has full support for foreign keys, joins, views, triggers, and stored procedures (in multiple languages). Postgres is often the best tool for the job as a back-end database for web systems and software tools, and cloud-based deployments are offered by most major cloud vendors. Its syntax also forms the basis for querying Amazon Redshift, which makes migration between the two systems relatively painless and makes Postgres a good "first step" for developers who may later work on Redshift's data warehouse platform.

Getting data out of Magento

You can use the Magento API to extract information. In most recent version, Magento offers both REST and SOAP versions of its API. Be warned, however, that historical versions of different Magento API calls could display inconsistent compatibility.

You can also pull data directly from the underlying database. (Using the API is really just doing this via a layer of abstraction.) If you go this route, familiarize yourself with the Magento database structure.

Preparing Magento data

Your Magento data needs to be structured into a schema for your destination database. If you choose to work with the default Magento database structure in your analytical environment, this simply means recreating the tables and fields that you pulled from your Magento API. You can refer to the API docs or use the information_schema tables in those databases to get the information you need.

Loading data into Postgres

Once you have identified all of the columns you will want to insert, you can use the CREATE TABLE statement in Postgres to create a table that can receive all of this data. Then, Postgres offers a number of methods for loading in data, and the best method varies depending on the quantity of data you have and the regularity with which you plan to load it.

For simple, day-to-day data insertion, running INSERT queries against the database directly are the standard SQL method for getting data added. Documentation on INSERT queries and their bretheren can be found in the Postgres documentation here.

For bulk insertions of data, which you will likely want to conduct if you have a high volume of data to load, other tools exist as well. This is where the COPY command becomes quite useful, as it allows you to load large sets of data into Postgres without needing to run a series of INSERT statements. Documentation can be found here.

The Postgres documentation also provides a helpful overall guide for conducting fast data inserts, populating your database, and avoiding common pitfalls in the process. You can find it here.

Keeping Magento data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Magento.

And remember, as with any code, once you write it, you have to maintain it. If Magento modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

Other data warehouse options

PostgreSQL is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, or Snowflake, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Snowflake, and To Panoply.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Magento data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your PostgreSQL data warehouse.